NumPy Lib
MOST IMPORTANT ATTRIBUTES ATTRIBUTES
Python |
---|
| array.ndim # number of axes (dimensions) of the array
array.shape # dimensions of the array, tuple of integers
array.size # total number of elements in the array
array.itemsize # size in bytes of each element
array.data # buffer containing the array elements
|
ARRAY CREATION
Unless explicitly specified np.array
tries to infer a good data type for the array that it creates.
The data type is stored in a special dtype object.
Python |
---|
| var = np.array(sequence) # creates array
var = np.asarray(sequence) # convert input to array
var = np.ndarray(*sequence) # creates multidimensional array
var = np.asanyarray(*sequence) # convert the input to an ndarray
# nested sequences will be converted to multidimensional array
var = np.zeros(ndarray.shape) # array with all zeros
var = np.ones(ndarray.shape) # array with all ones
var = np.empty(ndarray.shape) # array with random values
var = np.identity(n) # identity array (n x n)
var = np.arange(start, stop, step) # creates an array with parameters specified
var = np.linspace(start, stop, num_of_elements) # step of elements calculated based on parameters
|
DATA TYPES FOR NDARRAYS
Python |
---|
| var = array.astype(np.dtype) # copy of the array, cast to a specified type
# return TypeError if casting fails
|
The numerical dtypes
are named the same way: a type name followed by a number indicating the number of bits per element.
TYPE |
TYPE CODE |
DESCRIPTION |
int8, uint8 |
i1, u1 |
Signed and unsigned 8-bit (1 byte) integer types |
int16, uint16 |
i2, u2 |
Signed and unsigned 16-bit integer types |
int32, uint32 |
i4, u4 |
Signed and unsigned 32-bit integer types |
int64, uint64 |
i8, u8 |
Signed and unsigned 32-bit integer types |
float16 |
f2 |
Half-precision floating point |
float32 |
f4 or f |
Standard single-precision floating point. Compatible with C float |
float64, float128 |
f8 or d |
Standard double-precision floating point. Compatible with C double and Python float object |
float128 |
f16 or g |
Extended-precision floating point |
complex64, complex128, complex256 |
c8, c16, c32 |
Complex numbers represented by two 32, 64, or 128 floats, respectively |
bool |
? |
Boolean type storing True and False values |
object |
O |
Python object type |
string_ |
S<num> |
Fixed-length string type (1 byte per character), <num> is string length |
unicode_ |
U<num> |
Fixed-length unicode type, <num> is length |
OPERATIONS BETWEEN ARRAYS AND SCALARS
Any arithmetic operations between equal-size arrays applies the operation element-wise.
array +
scalar → element-wise addition ([1, 2, 3] + 2 = [3, 4, 5]
)
array -
scalar → element-wise subtraction ([1 , 2, 3] - 2 = [-2, 0, 1]
)
array *
scalar → element-wise multiplication ([1, 2, 3] * 3 = [3, 6, 9]
)
array / scalar → element-wise division ([1, 2, 3] / 2 = [0.5 , 1 , 1.5]
)
array_1 +
array_2 → element-wise addition ([1, 2, 3] + [1, 2, 3] = [2, 4, 6]
)
array_1 -
array_2 → element-wise subtraction ([1, 2, 4] - [3 , 2, 1] = [-2, 0, 2]
)
array_1 *
array_2 → element-wise multiplication ([1, 2, 3] * [3, 2, 1] = [3, 4, 3]
)
array_1 /
array_2 → element-wise division ([1, 2, 3] / [3, 2, 1] = [0.33, 1, 3]
)
SHAPE MANIPULATION
Python |
---|
| np.reshape(array, new_shape) # changes the shape of the array
np.ravel(array) # returns the array flattened
array.resize(shape) # modifies the array itself
array.T # returns the array transposed
np.transpose(array) # returns the array transposed
np.swapaxes(array, first_axis, second_axis) # interchange two axes of an array
# if array is an ndarray, then a view of it is returned; otherwise a new array is created
|
JOINING ARRAYS
Python |
---|
| np.vstack((array1, array2)) # takes tuple, vertical stack of arrays (column wise)
np.hstack((array1, array2)) # takes a tuple, horizontal stack of arrays (row wise)
np.dstack((array1, array2)) # takes a tuple, depth wise stack of arrays (3rd dimension)
np.stack(*arrays, axis) # joins a sequence of arrays along a new axis (axis is an int)
np.concatenate((array1, array2, ...), axis) # joins a sequence of arrays along an existing axis (axis is an int)
|
SPLITTING ARRAYS
Python |
---|
| np.split(array, indices) # splits an array into equall7 long sub-arrays (indices is int), if not possible raises error
np.vsplit(array, indices) # splits an array equally into sub-arrays vertically (row wise) if not possible raises error
np.hsplit(array, indices) # splits an array equally into sub-arrays horizontally (column wise) if not possible raises error
np.dsplit(array, indices) # splits an array into equally sub-arrays along the 3rd axis (depth) if not possible raises error
np.array_split(array, indices) # splits an array into sub-arrays, arrays can be of different lengths
|
VIEW()
Python |
---|
| var = array.view() # creates a new array that looks at the same data
# slicing returns a view
# view shapes are separated but assignment changes all arrays
|
COPY()
Python |
---|
| var = array.copy() # creates a deep copy of the array
|
INDEXING, SLICING, ITERATING
1-dimensional → sliced, iterated and indexed as standard
n-dimensional → one index per axis, index given in tuple separated by commas [i, j] (i, j)
dots (...
) represent as many colons as needed to produce complete indexing tuple
x[1, 2, ...] == [1, 2, :, :, :]
x[..., 3] == [:, :, :, :, 3]
x[4, ..., 5, :] == [4, :, :, 5, :]
iteration on first index, use .flat() to iterate over each element
x[*bool]
returns row with corresponding True index
x[condition]
return only elements that satisfy condition
- x
[[*index]]
return rows ordered by indexes
x[[*i], [*j]]
return elements selected by tuple (i, j)
x[ np.ix_( [*i], [*j] ) ]
return rectangular region
UNIVERSAL FUNCTIONS (ufunc)
Functions that performs element-wise operations (vectorization).
Python |
---|
| np.abs(array) # vectorized abs(), return element absolute value
np.fabs(array) # faster abs() for non-complex values
np.sqrt(array) # vectorized square root (x^0.5)
np.square(array) # vectorized square (x^2)
np.exp(array) # vectorized natural exponentiation (e^x)
np.log(array) # vectorized natural log(x)
np.log10(array) # vectorized log10(x)
np.log2(array) # vectorized log2(x)
np.log1p(array) # vectorized log(1 + x)
np.sign(array) # vectorized sign (1, 0, -1)
np.ceil(array) # vectorized ceil()
np.floor(array) # vectorized floor()
np.rint(array) # vectorized round() to nearest int
np.modf(array) # vectorized divmod(), returns the fractional and integral parts of element
np.isnan(array) # vectorized x == NaN, return boolean array
np.isinf(array) # vectorized test for positive or negative infinity, return boolean array
np.isfineite(array) # vectorized test fo finiteness, returns boolean array
np.cos(array) # vectorized cos(x)
np.sin(array) # vectorized sin(x)
np.tan(array) # vectorized tan(x)
np.cosh(array) # vectorized cosh(x)
np.sinh(array) # vector sinh(x)
np.tanh(array) # vectorized tanh(x)
np.arccos(array) # vectorized arccos(x)
np.arcsinh(array) # vectorized arcsinh(x)
np.arctan(array) # vectorized arctan(x)
np.arccosh(array) # vectorized arccosh(x)
np.arcsinh(array) # vectorized arcsin(x)
np.arctanh(array) # vectorized arctanh(x)
np.logical_not(array) # vectorized not(x), equivalent to -array
np.add(x_array, y_array) # vectorized addition
np.subtract(x_array, y_array) # vectorized subtraction
np.multiply(x_array, y_array) # vectorized multiplication
np.divide(x_array, y_array) # vectorized division
np.floor_divide(x_array, y_array) # vectorized floor division
np.power(x_array, y_array) # vectorized power
np.maximum(x_array, y_array) # vectorized maximum
np.minimum(x_array, y_array) # vectorized minimum
np.fmax(x_array, y_array) # vectorized maximum, ignores NaN
np.fmin(x_array, y_array) # vectorized minimum, ignores NaN
np.mod(x_array, y_array) # vectorized modulus
np.copysign(x_array, y_array) # vectorized copy sign from y_array to x_array
np.greater(x_array, y_array) # vectorized x > y
np.less(x_array, y_array) # vectorized x < y
np.greter_equal(x_array, y_array) # vectorized x >= y
np.less_equal(x_array, y_array) # vectorized x <= y
np.equal(x_array, y_array) # vectorized x == y
np.not_equal(x_array, y_array) # vectorized x != y
np.logical_and(x_array, y_array) # vectorized x & y
np.logical_or(x_array, y_array) # vectorized x | y
np.logical_xor(x_array, y_array) # vectorized x ^ y
|
CONDITIONAL LOGIC AS ARRAY OPERATIONS
Python |
---|
| np.where(condition, x, y) # return x if condition == True, y otherwise
|
MATHEMATICAL AND STATISTICAL METHODS
np.method(array, args)
or array.method(args)
.
Boolean values are coerced to 1 (True
) and 0 (False
).
Python |
---|
| np.sum(array, axis=None) # sum of array elements over a given axis
np.median(array, axis=None) # median along the specified axis
np.mean(array, axis=None) # arithmetic mean along the specified axis
np.average(array, axis=None) # weighted average along the specified axis
np.std(array, axis=None) # standard deviation along the specified axis
np.var(array, axis=None) # variance along the specified axis
np.min(array, axis=None) # minimum value along the specified axis
np.max(array, axis=None) # maximum value along the specified axis
np.argmin(array, axis=None) # indices of the minimum values along an axis
np.argmax(array, axis=None) # indices of the maximum values
np.cumsum(array, axis=None) # cumulative sum of the elements along a given axis
np.cumprod(array, axis=None) # cumulative sum of the elements along a given axis
|
METHODS FOR BOOLEAN ARRAYS
Python |
---|
| np.all(array, axis=None) # test whether all array elements along a given axis evaluate to True
np.any(array, axis=None) # test whether any array element along a given axis evaluates to True
|
SORTING
Python |
---|
| array.sort(axis=-1) # sort an array in-place (axis = None applies on flattened array)
np.sort(array, axis=-1) # return a sorted copy of an array (axis = None applies on flattened array)
|
SET LOGIC
Python |
---|
| np.unique(array) # sorted unique elements of an array
np.intersect1d(x, y) # sorted common elements in x and y
np.union1d(x, y) # sorte union of elements
np.in1d(x, y) # boolean array indicating whether each element of x is contained in y
np.setdiff1d(x, y) # Set difference, elements in x that are not in y
np.setxor1d() # Set symmetric differences; elements that are in either of the arrays, but not both
|
FILE I/O WITH ARRAYS
Python |
---|
| np.save(file, array) # save array to binary file in .npy format
np.savez(file, *array) # save several arrays into a single file in uncompressed .npz format
np.savez_compressed(file, *args, *kwargs) # save several arrays into a single file in compressed .npz format
# *ARGS: arrays to save to the file. arrays will be saved with names "arr_0", "arr_1", and so on
# **KWARGS: arrays to save to the file. arrays will be saved in the file with the keyword names
np.savetxt(file, X, fmt="%.18e", delimiter=" ") # save array to text file
# X: 1D or 2D
# FMT: Python Format Specification Mini-Language
# DELIMITER: {str} -- string used to separate values
np.load(file, allow_pickle=False) # load arrays or pickled objects from .npy, .npz or pickled files
np.loadtxt(file, dtype=float, comments="#", delimiter=None)
# DTYPE: {data type} -- data-type of the resulting array
# COMMENTS: {str} -- characters used to indicate the start of a comment. None implies no comments
# DELIMITER: {str} -- string used to separate values
|
LINEAR ALGEBRA
Python |
---|
| np.diag(array, k=0) # extract a diagonal or construct a diagonal array
# K: {int} -- k>0 diagonals above main diagonal, k<0 diagonals below main diagonal (main diagonal k = 0)
np.dot(x ,y) # matrix dot product
np.trace(array, offset=0, dtype=None, out=None) # return the sum along diagonals of the array
# OFFSET: {int} -- offset of the diagonal from the main diagonal
# dtype: {dtype} -- determines the data-type of the returned array
# OUT: {ndarray} -- array into which the output is placed
np.linalg.det(A) # compute the determinant of an array
np.linalg.eig(A) # compute the eigenvalues and right eigenvectors of a square array
np.linalg.inv(A) # compute the (multiplicative) inverse of a matrix
# A_inv satisfies dot(A, A_inv) = dor(A_inv, A) = eye(A.shape[0])
np.linalg.pinv(A) # compute the (Moore-Penrose) pseudo-inverse of a matrix
np.linalg.qr() # factor the matrix a as qr, where q is orthonormal and r is upper-triangular
np.linalg.svd(A) # Singular Value Decomposition
np.linalg.solve(A, B) # solve a linear matrix equation, or system of linear scalar equations AX = B
np.linalg.lstsq(A, B) # return the least-squares solution to a linear matrix equation AX = B
|
RANDOM NUMBER GENERATION
Python |
---|
| np.random.seed()
np.random.rand()
np.random.randn()
np.random.randint()
np.random.Generator.permutation(x) # randomly permute a sequence, or return a permuted range
np.random.Generator.shuffle(x) # Modify a sequence in-place by shuffling its contents
np.random.Generator.beta(a, b, size=None) # draw samples from a Beta distribution
# A: {float, array floats} -- Alpha, > 0
# B: {int, tuple ints} -- Beta, > 0
np.random.Generator.binomial(n, p, size=None) # draw samples from a binomial distribution
# N: {int, array ints} -- parameter of the distribution, >= 0
# P: {float, arrey floats} -- Parameter of the distribution, >= 0 and <= 1
np.random.Generator.chisquare(df, size=None)
# DF: {float, array floats} -- degrees of freedom, > 0
np.random.Generator.gamma(shape, scale=1.0, size=None) # draw samples from a Gamma distribution
# SHAPE: {float, array floats} -- shape of the gamma distribution, != 0
np.random.Generator.normal(loc=0.0, scale=1.0, Size=None) # draw random samples from a normal (Gaussian) distribution
# LOC: {float, all floats} -- mean ("centre") of distribution
# SCALE: {float, all floats} -- standard deviation of distribution, != 0
np.random.Generator.poisson(lam=1.0, size=None) # draw samples from a Poisson distribution
# LAM: {float, all floats} -- expectation of interval, >= 0
np.random.Generator.uniform(low=0.0,high=1.0, size=None) # draw samples from a uniform distribution
# LOW: {float, all floats} -- lower boundary of the output interval
# HIGH: {float, all floats} -- upper boundary of the output interval
np.random.Generator.zipf(a, size=None) # draw samples from a Zipf distribution
# A: {float, all floats} -- distribution parameter, > 1
|