array.ndim# number of axes (dimensions) of the arrayarray.shape# dimensions of the array, tuple of integersarray.size# total number of elements in the arrayarray.itemsize# size in bytes of each elementarray.data# buffer containing the array elements
ARRAY CREATION
Unless explicitly specified np.array tries to infer a good data type for the array that it creates.
The data type is stored in a special dtype object.
var=np.array(sequence)# creates arrayvar=np.asarray(sequence)# convert input to arrayvar=np.ndarray(*sequence)# creates multidimensional arrayvar=np.asanyarray(*sequence)# convert the input to an ndarray# nested sequences will be converted to multidimensional arrayvar=np.zeros(ndarray.shape)# array with all zerosvar=np.ones(ndarray.shape)# array with all onesvar=np.empty(ndarray.shape)# array with random valuesvar=np.identity(n)# identity array (n x n)var=np.arange(start,stop,step)# creates an array with parameters specifiedvar=np.linspace(start,stop,num_of_elements)# step of elements calculated based on parameters
np.reshape(array,new_shape)# changes the shape of the arraynp.ravel(array)# returns the array flattenedarray.resize(shape)# modifies the array itselfarray.T# returns the array transposednp.transpose(array)# returns the array transposednp.swapaxes(array,first_axis,second_axis)# interchange two axes of an array# if array is an ndarray, then a view of it is returned; otherwise a new array is created
np.vstack((array1,array2))# takes tuple, vertical stack of arrays (column wise)np.hstack((array1,array2))# takes a tuple, horizontal stack of arrays (row wise)np.dstack((array1,array2))# takes a tuple, depth wise stack of arrays (3rd dimension)np.stack(*arrays,axis)# joins a sequence of arrays along a new axis (axis is an int)np.concatenate((array1,array2,...),axis)# joins a sequence of arrays along an existing axis (axis is an int)
np.split(array,indices)# splits an array into equall7 long sub-arrays (indices is int), if not possible raises errornp.vsplit(array,indices)# splits an array equally into sub-arrays vertically (row wise) if not possible raises errornp.hsplit(array,indices)# splits an array equally into sub-arrays horizontally (column wise) if not possible raises errornp.dsplit(array,indices)# splits an array into equally sub-arrays along the 3rd axis (depth) if not possible raises errornp.array_split(array,indices)# splits an array into sub-arrays, arrays can be of different lengths
var=array.copy()# creates a deep copy of the array
INDEXING, SLICING, ITERATING
1-dimensional → sliced, iterated and indexed as standard
n-dimensional → one index per axis, index given in tuple separated by commas [i, j] (i, j)
dots (...) represent as many colons as needed to produce complete indexing tuple
x[1, 2, ...] == [1, 2, :, :, :]
x[..., 3] == [:, :, :, :, 3]
x[4, ..., 5, :] == [4, :, :, 5, :]
iteration on first index, use .flat() to iterate over each element
x[*bool] returns row with corresponding True index
x[condition] return only elements that satisfy condition
x[[*index]] return rows ordered by indexes
x[[*i], [*j]] return elements selected by tuple (i, j)
x[ np.ix_( [*i], [*j] ) ] return rectangular region
UNIVERSAL FUNCTIONS (ufunc)
Functions that performs element-wise operations (vectorization).
np.sum(array,axis=None)# sum of array elements over a given axisnp.median(array,axis=None)# median along the specified axisnp.mean(array,axis=None)# arithmetic mean along the specified axisnp.average(array,axis=None)# weighted average along the specified axisnp.std(array,axis=None)# standard deviation along the specified axisnp.var(array,axis=None)# variance along the specified axisnp.min(array,axis=None)# minimum value along the specified axisnp.max(array,axis=None)# maximum value along the specified axisnp.argmin(array,axis=None)# indices of the minimum values along an axisnp.argmax(array,axis=None)# indices of the maximum valuesnp.cumsum(array,axis=None)# cumulative sum of the elements along a given axisnp.cumprod(array,axis=None)# cumulative sum of the elements along a given axis
np.all(array,axis=None)# test whether all array elements along a given axis evaluate to Truenp.any(array,axis=None)# test whether any array element along a given axis evaluates to True
array.sort(axis=-1)# sort an array in-place (axis = None applies on flattened array)np.sort(array,axis=-1)# return a sorted copy of an array (axis = None applies on flattened array)
np.unique(array)# sorted unique elements of an arraynp.intersect1d(x,y)# sorted common elements in x and ynp.union1d(x,y)# sorte union of elementsnp.in1d(x,y)# boolean array indicating whether each element of x is contained in ynp.setdiff1d(x,y)# Set difference, elements in x that are not in ynp.setxor1d()# Set symmetric differences; elements that are in either of the arrays, but not both
np.save(file,array)# save array to binary file in .npy formatnp.savez(file,*array)# save several arrays into a single file in uncompressed .npz formatnp.savez_compressed(file,*args,*kwargs)# save several arrays into a single file in compressed .npz format# *ARGS: arrays to save to the file. arrays will be saved with names "arr_0", "arr_1", and so on# **KWARGS: arrays to save to the file. arrays will be saved in the file with the keyword namesnp.savetxt(file,X,fmt="%.18e",delimiter=" ")# save array to text file# X: 1D or 2D# FMT: Python Format Specification Mini-Language# DELIMITER: {str} -- string used to separate valuesnp.load(file,allow_pickle=False)# load arrays or pickled objects from .npy, .npz or pickled filesnp.loadtxt(file,dtype=float,comments="#",delimiter=None)# DTYPE: {data type} -- data-type of the resulting array# COMMENTS: {str} -- characters used to indicate the start of a comment. None implies no comments# DELIMITER: {str} -- string used to separate values
np.diag(array,k=0)# extract a diagonal or construct a diagonal array# K: {int} -- k>0 diagonals above main diagonal, k<0 diagonals below main diagonal (main diagonal k = 0)np.dot(x,y)# matrix dot productnp.trace(array,offset=0,dtype=None,out=None)# return the sum along diagonals of the array# OFFSET: {int} -- offset of the diagonal from the main diagonal# dtype: {dtype} -- determines the data-type of the returned array# OUT: {ndarray} -- array into which the output is placednp.linalg.det(A)# compute the determinant of an arraynp.linalg.eig(A)# compute the eigenvalues and right eigenvectors of a square arraynp.linalg.inv(A)# compute the (multiplicative) inverse of a matrix# A_inv satisfies dot(A, A_inv) = dor(A_inv, A) = eye(A.shape[0])np.linalg.pinv(A)# compute the (Moore-Penrose) pseudo-inverse of a matrixnp.linalg.qr()# factor the matrix a as qr, where q is orthonormal and r is upper-triangularnp.linalg.svd(A)# Singular Value Decompositionnp.linalg.solve(A,B)# solve a linear matrix equation, or system of linear scalar equations AX = Bnp.linalg.lstsq(A,B)# return the least-squares solution to a linear matrix equation AX = B
np.random.seed()np.random.rand()np.random.randn()np.random.randint()np.random.Generator.permutation(x)# randomly permute a sequence, or return a permuted rangenp.random.Generator.shuffle(x)# Modify a sequence in-place by shuffling its contentsnp.random.Generator.beta(a,b,size=None)# draw samples from a Beta distribution# A: {float, array floats} -- Alpha, > 0# B: {int, tuple ints} -- Beta, > 0np.random.Generator.binomial(n,p,size=None)# draw samples from a binomial distribution# N: {int, array ints} -- parameter of the distribution, >= 0# P: {float, arrey floats} -- Parameter of the distribution, >= 0 and <= 1np.random.Generator.chisquare(df,size=None)# DF: {float, array floats} -- degrees of freedom, > 0np.random.Generator.gamma(shape,scale=1.0,size=None)# draw samples from a Gamma distribution# SHAPE: {float, array floats} -- shape of the gamma distribution, != 0np.random.Generator.normal(loc=0.0,scale=1.0,Size=None)# draw random samples from a normal (Gaussian) distribution# LOC: {float, all floats} -- mean ("centre") of distribution# SCALE: {float, all floats} -- standard deviation of distribution, != 0np.random.Generator.poisson(lam=1.0,size=None)# draw samples from a Poisson distribution# LAM: {float, all floats} -- expectation of interval, >= 0np.random.Generator.uniform(low=0.0,high=1.0,size=None)# draw samples from a uniform distribution# LOW: {float, all floats} -- lower boundary of the output interval# HIGH: {float, all floats} -- upper boundary of the output intervalnp.random.Generator.zipf(a,size=None)# draw samples from a Zipf distribution# A: {float, all floats} -- distribution parameter, > 1